Math 251 Midterm 1 Sample

Name: _____

This exam has 10 questions, for a total of 100 points.

Please answer each question in the space provided. You need to write **full solutions**. Answers without justification will not be graded. Cross out anything the grader should ignore and circle or box the final answer.

Question	Points	Score
1	10	
2	15	
3	10	
4	10	
5	10	
6	10	
7	5	
8	10	
9	10	
10	10	
Total:	100	

Question 1. (10 pts)

In the following, \mathbf{a}, \mathbf{b} and \mathbf{c} are nonzero vectors in \mathbb{R}^3 .

(a) Does the expression $\mathbf{a} \times (\mathbf{b} \bullet \mathbf{c})$ make sense?

(b) If $\mathbf{a} \times \mathbf{b} = \mathbf{0}$, what is the angle between \mathbf{a} and \mathbf{b} ? List all possibilities.

(c) Given the surface $z^2 + x^2 - y^2 - 6z + 2x + 6 = 0$, determine its type:

- A. ellipsoid
- B. elliptic paraboloid
- C. cone
- D. hyperboloid of one sheet
- E. hyperboloid of two sheets

Question 2. (15 pts)

(a) Find an equation of the plane that passes through the point (3, 3, 1)and is orthogonal to the line

$$x = t, \quad y = 2 + t, \quad z = 3t.$$

(b) Find the angle between the plane in part (a) with the plane x-y-3z=1

(c) Find the line of intersection of the plane in part (a) with the plane x - y - 3z = 1.

Question 3. (10 pts)

A curve is described by the vector function $\mathbf{r}(t) = \langle \sin \pi t, \sqrt{t}, \cos \pi t \rangle$.

(a) Find the derivative of $\mathbf{r}(t)$.

(b) Find the tangent line to this curve at the point (0, 1, -1).

Question 4. (10 pts)

Determine whether the following limit exists or not. Show work!

$$\lim_{(x,y)\to(0,0)}\frac{xy}{x^2+y^2}$$

Question 5. (10 pts)

Let $z = 5x^2y + y$ with $x = s \cos t$ and $y = s^2 + e^t$. Find the value of $\frac{\partial z}{\partial t}$ for (s,t) = (1,0).

Question 6. (10 pts)

A surface is given by an equation

$$x^2 + y^2 - 2z^2 + xyz = 2$$

Find the tangent plane of this surface at the point (0, 2, 1)

Question 7. (5 pts)

Find all second partial derivatives of the function $f(x, y) = e^{x^2 - y^2}$.

Question 8. (10 pts)

Given the equation $xe^z = y^2 \sin(xyz) + 1000$, find $\partial z / \partial y$ by using implicit differentiation.

Question 9. (10 pts)

Given the function

$$z = \sqrt{y^2 - x}$$

(a) Find the gradient of the function

(b) Find the maximum rate of change of the function at the point (5,3), and determine in which direction this maximum occurs.

Question 10. (10 pts)

Use differentials to approximate the number $\sqrt{3.96} \ln(1.07)$.